May 03, 2011

What is multithreaded programming? What is a deadlock?

Full Question:
What is multithreaded programming? What is a deadlock?

Multithreading as a widespread programming and execution model allows multiple threads to exist within the context of a single process. These threads share the process' resources but are able to execute independently. The threaded programming model provides developers with a useful abstraction of concurrent execution. However, perhaps the most interesting application of the technology is when it is applied to a single process to enable parallel execution on a multiprocessor system.

This advantage of a multithreaded program allows it to operate faster on computer systems that have multiple CPUs, CPUs with multiple cores, or across a cluster of machines — because the threads of the program naturally lend themselves to truly concurrent execution. In such a case, the programmer needs to be careful to avoid race conditions, and other non-intuitive behaviors. In order for data to be correctly manipulated, threads will often need to rendezvous in time in order to process the data in the correct order. Threads may also require mutually-exclusive operations (often implemented using semaphores) in order to prevent common data from being simultaneously modified, or read while in the process of being modified. Careless use of such primitives can lead to deadlocks.

In computer science, Coffman deadlock refers to a specific condition when two or more processes are each waiting for the other to release a resource, or more than two processes are waiting for resources in a circular chain (see Necessary conditions). Deadlock is a common problem in multiprocessing where many processes share a specific type of mutually exclusive resource known as a software lock or soft lock. Computers intended for the time-sharing and/or real-time markets are often equipped with a hardware lock (or hard lock) which guarantees exclusive access to processes, forcing serialized access. Deadlocks are particularly troubling because there is no general solution to avoid (soft) deadlocks.

This situation may be likened to two people who are drawing diagrams, with only one pencil and one ruler between them. If one person takes the pencil and the other takes the ruler, a deadlock occurs when the person with the pencil needs the ruler and the person with the ruler needs the pencil to finish his work with the ruler. Neither request can be satisfied, so a deadlock occurs.

The telecommunications description of deadlock is weaker than Coffman deadlock because processes can wait for messages instead of resources. A deadlock can be the result of corrupted messages or signals rather than merely waiting for resources. For example, a dataflow element that has been directed to receive input on the wrong link will never proceed even though that link is not involved in a Coffman cycle.